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A smoke plume that has become nearly horizontal at some distance from the source 
behaves much like a ‘line-thermal’, for which, using a perturbation method, a 
solution in laminar flow may be obtained, on the supposition that excess tempera- 
tures are small and buoyant movements slow, i.e. that the Rayleigh number of 
the problem is suitably low. In  analogy with some other problems in turbulent 
flow and turbulent diffusion, the laminar solution is then assumed to approximate 
what is observed in the turbulent case, provided that the rate of growth of the 
diffusing cloud is assessed realistically. 

The so-calculated pattern of streamlines in a cross-section of the plume agrees 
qualitatively with the observed behaviour of hot plumes and puffs, consisting 
of two vortex-like structures of opposite sense of rotation, lying on either side 
of the plume centre. The bodily upward movement of the plume is found to 
depend critically on the rate of growth of the plume. Thus when the plume dia- 
meter grows faster than linearly with distance (such behaviour characterizes 
the ‘ quasi-asymptotic ’ stage of relative diffusion predicted by Batchelor, 
1952, for which Richardson’s (4/3)-power law of eddy diffusivity holds) the plume 
tends to reach an asymptotic height. A crude theoretical estimate of the asymp- 
totic height attained shows fair agreement with observations reported elsewhere. 
Although the plume nearly reaches this asymptotic height in the quasi-asymp- 
totic phase, it retains a small gradient in the final phase which may be of impor- 
tance at large distances from the source. The small-Rayleigh-number criterion 
restricts the validity of the solution to ‘weakly buoyant ’ plumes. 

1. Introduction 
The problem of dispersal of pollutants in the atmosphere requires a study of 

the buoyant motion in smoke plumes because most major sources of dust and 
gaseous pollutants discharge their effluents at a temperature considerably above 
that of the atmospheric air. The usual engineering approach to this aspect of 
the problem is to assume an ‘effective’ chimney height a t  which the smoke 
plume is supposed to turn horizontal and then calculate the diffusion of this 
horizontal cloud. The difference between the ‘effective ’ and the physical chimney 
heights is regarded as due to the upward momentum and the buoyancy of 
the emitted smoke. The magnitude of this difference is also determined by the 
speed and the ‘gustiness’ of the wind. It is, moreover, not difficult to show that, 
for such important sources as power station chimneys, buoyancy is far more 
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important than initial momentum in determining the ‘effective’ chimney 
height, except in so far as ‘downwash’ is concerned (Hawkins & Nonhebell955). 

Reduced to its simplest form then, the problem is to elucidate the behaviour 
of a buoyant mass of fluid, injected at a constant rate into a moderately strong 
horizontal wind. Attempts to provide a theoretical solution have been made by 
Bosanquet, Carey & Halton (1950), Sutton (1950), Priestley (1956) and Scorer 
(1959). Sutton (1950) and Priestley (1956) start by considering a vertically rising 
plume and assume that this is simply ‘sheared over’ by the wind, so that the 
various horizontal cross-sections are stacked qn one another at an inclination 
tan-1 (w/U), where w is the velocity of upward drift and U the wind velocity. 
Sutton proceeds by adopting the ‘mixing length’ hypothesis while Priestley 
assumes Gaussian temperature and velocity profiles. At distances from the 
chimney large compared with its diameter, both theories predict an asymptotic 
mean plume path of the form z = const.xn, 

where x is the height above the chimney top, 2 the horizontal distance along wind, 
and n an exponent having the value of Q in Sutton’s treatment, 2 in Priestley’s. 
In  fact if one plots the mean path of almost any plume within the first 300m 
of the chimney one finds that an equation of the form (A) fits the data moderately 
well, the value of the exponent n lying between 0-5 and 1.0, depending on the 
kind of source and on atmospheric conditions. Scorer (1959) also finds a result 
of the form (A) with n = Z$ (as Sutton’s exponent) on the basis of dimensional 
reasoning. 

All these results appear to depend strongly on the asumption that the dia- 
meter of the growing plume is proportional to x ,  the height reached above the 
chimney top. This assumption, in turn, may be justified by the two hypotheses 
that 

(1) the distribution of velocity, etc., across the jet is ‘self-preserving’, and 
( 2 )  the effects of ambient turbulence are negligible. 
Clearly, the second of these hypotheses can only hold relatively close to the 

chimney where the buoyant jet’s self-created turbulence is the main diffusing 
agent. For this phase of plume motion it is indeed plausible to transfer laboratory 
results on the spreading of jets, as has been done by Bosanquet et al. (1950). 
However, it is intuitively apparent that when the velocity of the plume relative 
to the surrounding air mass becomes small compared to wind speed (i.e. where 
the inclination of the plume against the horizontal becomes small) the environ- 
mental turbulence takes over as the main dispersing agency. There the ‘spread- 
ing ’ problem becomes one of turbulent diffusion relative to the plume’s centre 
of mass, in a field of turbulence which in a first approximation may be assumed 
to be homogeneous. 

That the environmental turbulence becomes important at a certain stage of 
development for the plume and for isolated thermals has been recognized by 
Priestley (1956) and also by Turner (1963). These authors introduce a ‘second 
phase’ of plume behaviour in which a loss of heat to the surroundings is postu- 
lated in a manner which is not very clear. The turbulent motions of the atmo- 
sphere are supposed to diffuse the cloud in the ‘&st phase’ but in the ‘second 
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phase’ they also partly remove its heat and momentum from what may be 
regarded as the effective plume. It would be perhaps more correct to say that 
the plume enters a phase of more vigorous diffusion, but the consequences of 
this are not worked out by Priestley in a way that could be practically applied. 
It is indeed clear both from theory and observation that after an initial phase 
of relatively slow diffusion, in which the plume has a regular outline, it  enters a 
regime of accelerated spreading and ‘ break-up ’. 

A further reason why the theories of Sutton and Priestley have limited applic- 
ability is that when the inclination of the plume is of the order of 10” it is very 
difficult to accept the proposition that a vertical plume has simply been ‘sheared 
over’ by the wind. A more realistic view of most smoke plumes is to regard them 
as nearly horizontal, having a slow upward drift caused by buoyancy. The 
approach of Bosanquet et al. (1950) is based essentially on this model and uses 
mixing length assumptions, similar to those adopted by Sutton (1950), but with 
the difference that the plume diameter is now regarded as proportional to x, 
the downwind distance from the source, rather than to z, the vertical distance. 
The asymptotic form of the result obtained is then 

z = const. log x. (B) 
The basic hypothesis underlying equation (B) is still that the plume’s self- 

created turbulence is the main diffusing agent, as in a jet exhausting into a 
quiescent atmosphere. At a large enough distance from the source a smoke 
plume no longer grows linearly with distance and there the theory of Bosanquet 
et al. becomes invalid. 

Zone of accelerating diffusion 
(broken outlines) 

Final zone 
(diffuse outlines) 
S 9 L  _.__-.--- 

It 
FIUURE 1. Phases in the spreading and upward drift of a hot smoke plume 

in a horizontal wind. 

These considerations suggest, then, that at least in calculating the ‘effective ’ 
chimney height another phase of plume behaviour should be considered in which 
the transport of heat and momentum is carried out by the environmental turbu- 
lence, assumed uniform and homogeneous for simplicity. This phase, in turn, 
may be subdivided into two regimes on the basis of Batchelor’s (1952) results on 
relative diffusion. While the size of the plume is within the Kolmogoroff range 
of inertial eddies, the rate of growth increases with plume size (zone of acceler- 
ated diffusion). Further downwind, where the plume is large compared to the 
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scale of turbulence, the rate of spread is slower, the plume diameter grows with 
the square root of time or distance drifted downwind, as in molecular diffusion 
(final zone). 

The above described scheme of buoyant plume behaviour is illustrated in 
figure 1. Essentially the same conclusions have been reached previously 
(Csanady 1961) on the basis of some visual and photographic field observations. 
The theory to be developed below shows that in the zone of accelerated diffusion 
(in the Kolmogoroff range, that is) the plume tends to a quasi-asymptotic height. 
Before completely reaching this, however, accelerated diffusion comes to an end 
and the plume ultimately enters its final phase, in which theory predicts a small, 
constant slope for the mean path. In  practical applications the quasi-asymptotic 
height could perhaps serve as the ‘effective chimney height’, for the slope in 
the final phase is ordinarily very small indeed. 

A limitation of the theory as developed here is that it only applies to ‘weakly 
buoyant’ plumes, meaning those drifting upward with a velocity less than the 
r.m.s. turbulent velocities. When this is not the case the path of the plume be- 
comes a more complex function, but even then the theory at least earmarks the 
important non-dimensional variables. 

Apart from elucidating the behaviour of the plume as regards its mean path, 
the present treatment also yields detailed information on the flow pattern of 
drift velocities within the plume. Two vortex-like structures of opposite sense of 
rotation are found to lie parallel to the plume axis, on a horizontal diameter, 
roughly at the edges of the thermal plume. These vortex-like structures have 
repeatedly been observed in plumes and thermals (Scorer 1958; Turner 1960, 
1963; Lilly 1962, 1964; Keffer & Baines 1963) and some crude theories have 
been proposed to explain their existence. In  fact the most elementary application 
of continuity leads one to expect a downflow region somewhere outside the rising 
plume; the present treatment provides some information on the details, which 
may be useful in certain applications such as fall-out of dust from a hot plume. 

The discussion above refers to a plume rising in a dynamically ‘neutral’ 
atmosphere. The effect on the plume path of small departures from the neutral 
gradient (as would normally occur in well-stirred layers) is likely to be negligible 
as may be judged from some calculations of Bosanquet et al. (1950). It should 
be noted, however, that the treatment to be given below is capable of extension 
to the non-neutral case. Another limitation of the theory as developed below 
is that it treats a plume far above ground but this may also be removed by a 
further development of the theory. 

2. Slow buoyant movements in a fluid, caused by an instantaneous 
line source of heat 

As a prelude to later discussion we shall develop here a theory of slow buoyant 
movements (in laminar flow) which would take place in a fluid at rest, following 
the instantaneous release of heat along the x-axis. Immediately after release 
there would be some fast movements, but in time as the heat released spread to 
a large mass of fluid, the excess temperatures would become small, the buoyant 
movements slow. At this stage it seems reasonable to describe the motion by 
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linearized equations, neglecting squares and products of velocities and excess 
temperatures. Morton ( 1960) has similarly treated the axisymmetric case 
introducing for the solution an expression in terms of the Rayleigh number 
governing the problem. The solution below corresponds to the first term in 
Morton's expansion. 

The linearized equations expressing conservation of mass, momentum and 
energy are: 

av aw -+--= 0, 
ay a x  

_ -  ;; - kV28. 

Here T, is the ambient temperature, 8 temperature excess, g is the acceleration 
of gravity, k is thermal diffusivity, V2 is the two-dimensional Laplttcian operator, 
the rest of the notation being conventional. A stream function is conveniently 
introduced, 

Another useful variable to work with is the x component of vorticity 

(2) 

5 = v2+. (3) 

(4) 

v = a+pz, = -a+py. 

The relevant solution of the energy equation is well known 

e = so exp { - (y2 + z2)/4kt). 

The centre temperature 8, depends on the heat liberated initially, &, per unit 
length of the x-axis 8, = Q/4npcp kt. ( 5 )  

F = gQ/nPpTa- ( 6 )  

In  place of heat release it is convenient to introduce a new variable 

The dimensions of this variable are length3/time2. 
By eliminating pressure from equations (1) one obtains the vorticity equation 

In  view of equations (4) to (6 )  the buoyancy term in the last result may be 

9 8 0  YF cr(y,z,t) = --- = -- exp 
~ , a y  2x4 

written as 

Equation (7) is the heat conduction equation with a source term. I n  the absence 
of boundaries its solution is 

(9) 
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For our purposes it will be sufficient to treat the algebraically simple case of u = k 
(Prandtl number unity). For this case, substituting CT from equation (8) and 
carrying out the integrations one finds 

This result may be put into a non-dimensional form by introducing the following 
scales: 

length, S = (2k t ) t ;  velocity, C = F/2k .  (11) 

The relevant non-dimensional variables are then 

g* = gL?/c, y* = y p ,  z* = 21s. 
Equation (10) may hence be written as 

t* = +y* exp { - *(Y*~+ z * ~ ) } .  

In  this last result the time no longer appears explicitly: the vorticity distribution 
remains self-similar, although its scale grows with the square root 6f time. 
A similar conclusion holds, of course, for the temperature distribution (see 
equation (4)) with the qualification that the absolute value of the temperature 
excess also decreases with t-l.  

Having found the vorticity distribution the flow problem is in principle 
solved. To compute the corresponding flow pattern one must, however, solve 
equation ( 3 ) .  Far from boundaries, and in view of the symmetry of the problem , 
one may write the required solution in polar co-ordinates as 

(13)  $ * ( r J  $) = f(r)cos $* 

Here @* = $/SC is the non-dimensional stream function. Substituting (12) 
and (13) into ( 3 )  one arrives at the ordinary differential equation (dropping stars 
from the non-dimensional quantities) 

This has the following well-behaved integral 

f ( r )  = - &r-1(1- e-+*). (15) 

The homogeneous equation has the solutions r and r-l, both of which are ruled 
out by the boundary conditions that w is finite at the origin and zero at infinity. 
Thus the non-dimensional stream-function is given by 

$ = - (cos $/2r)  (1 - e-ir'). (16) 

The flow pattern specified by this function is shown in figure 2. Vertical velo- 
cities along the horizontal diameter across the centre of the plume are given by 
(in a non-dimensional form) 

w* = - = &{e-+' - (1 - e+*)/rZ}. (17) 
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The value of this at r = 0 is &, so that the vertical velocity at the plume centre is 

wo = ac, (18) 

having returned to dimensional quantities. 
The distribution of the non-dimensional velocity w* along the horizontal 

diameter across the plume centre is shown in figure 3. Downward flow is found 
to occur outside r* = 1.6. One may say that a vortex-like structure is centred at 
r* = 1.6, where the mean excess temperature is 28 y-, of the excess temperature 
at  the plume centre. In  other words, the eye of the vortex is close to the edge of 
the thermal plume. 

FIGURE 2. Cross-section of flow pattern in a weak line-thermal. 

In  two recent papers Lilly (1962, 1964) has reported on the numerical simula- 
tion of buoyant convection induced by a line-source of heat. The problem is thus 
identical with the one discussed above, although Lilly’s approach is different 
in that he is able to retain the non-linear terms in the equations of motion and 
energy, since he works with the aid of an electronic computer. His resulting 
flow patterns show considerable similarity to the one calculated here. 

3. Application of the theory to turbulent flow 
The introduction of eddy exchange coefficients for heat, matter and momentum 

was an early and obvious attempt to describe turbulent transport of these entities. 
With increasing knowledge of the structure of turbulent flow it has become clear 
that this simple model is certainly incorrect in detail: many of the turbulent 
eddies are too large for their contribution to the flux of heat, etc., to be set 
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proportional to the local gradient. Townsend (1956, p. 107) discusses these 
questions in some detail. 

Nevertheless, it is also a fact that the overall features of observed temperature 
or concentration distributions show a remarkable resemblance to those charac- 
terizing molecular diffusion, with the single important difference that the rate 
of growth of, say, a diffusing cloud is several orders of magnitude greater when 
turbulence is present. In  particular, molecular diffusion from a point source 
leads to a Gaussian distribution of temperature or concentration while in the 
presence of turbulence the same functional form of mean quantity distribution is 
approached to an approximation adequate in practice. Similarly,velocity profiles 
in a turbulent two-dimensional boundary layer or mixing layer can be described 
quite well with the aid of the laminar solutions (Townsend 1956; Clauser 1956). 

These experimental facts must somehow be reconciled with conclusive theor- 
etical and experimental evidence to the effect that turbulent transport cannot 
possibly be proportional to a local gradient. One is forced to conclude that mole- 
cular and turbulent diffusion have some deep-lying fundamental similarities, 
which do not, however, extend to the ordinary linear coupling of ‘fluxes’ and 
‘forces’, to use the language of irreversible thermodynamics. At this point one 
may recall the statistical model of random walk, from which the classical dif- 
fusion equation may be derived by proceeding to the limit of very short steps. 
Clearly, it  is not necessary to fall back on a differential equation; this is only 
done for mathematical convenience in finding solutions. The Gaussian distribu- 
tion follows directly from the random-walk model. If one regards the latter a 
crude but essentially realistic model of turbulent (as well as molecular) diffusion, 
the situation becomes considerably clearer. It is then not surprising that both 
types of diffusion lead to the same (or very similar) distributions, in particular 
a Gaussian distribution if there is a point source. Almost incidentally, in the 
case of molecular diffusion it is possible to proceed to the limit of vanishing 
steps and define local transport coefficients. That in turbulent flow this is not 
possible is a relatively unimportant distinction physically. Starting with the 
premise that the point-source distribution is Gaussian, it is possible to define 
‘virtual’ eddy diffusivities (Batchelor 1949, 1952) which would be those neces- 
sary to produce the same distributions in molecular diffusion, without any 
pretence of dealing with a local transport coefficient. The above rather vague 
arguments may be summarized in the hypothesis : 

‘The mechanism of molecular and turbulent diffusion being fundamentally 
similar, it  is possible to approximate the spatial distribution of matter in turbulent 
diffusion by the distribution applying in molecular diffusion under identical 
boundary and initial conditions, provided that the different rate of growth is 
allowed for.’ It should be emphasized once more that this is logically not the 
same step as assuming transport to be proportional to gradient, even if the end 
result is very much the same. 

The whole argument of this section applies to ‘relative ’ diffusion in turbulence 
as well as to diffusion observed by fixed-point instruments, even though the 
experimental evidence for the normality of distribution in relative diffusion 
is rather meagre. In  relative diffusion the effective steps in the random-walk 
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process would be only those which separate particles, not those which all particles 
of the cloud take together (= those caused by eddies large compared to cloud 
size). Another difficulty to be discussed before the approach of the previous 
section is used in dealing with turbulent flow is that the random-walk model 
does not apply directly to the transfer of momentum or vorticity. If an expression 
similar to (9) is to hold in turbulent flow, vorticity should behave like a trans- 
ferable scalar property. From the mean-value vorticity equatioh (Townsend 
1956, p. 28) one may deduce that 5 would indeed behave in this manner if the 
correlation f(au‘/ax) were zero. There is in fact no physical reason why, say, a 
positive value of should predominantly be associated with a positive gradient 
au‘/ax. If one accepts that this correlation is indeed negligible, it  becomes reason- 
able to describe the changes in the mean vorticity component E as those 
corresponding to a ‘random walk’ of the vorticity which is convected without 
change by the turbulent movements. A very similar argument holds for the 
spread of vorticity in a two-dimensional turbulent boundary layer and it may be 
appropriate to refer once more to the work of Clauser (1956) who demonstrated 
that the behaviour of the ‘outer ’ part of such a layer can be well understood with 
the aid of laminar solutions. 

According to these considerations we shall now assume that the solution of 
the previous section applies to the growth and buoyant movement of a line- 
thermal in turbulent surroundings, provided that its rate of growth is assessed 
realistically. To the accuracy of this approximation (relying on the random- 
walk model) the spread of heat and vorticity takes place identically. This justi- 
fies a posteriori the assumption k = v made above. The standard deviation S 
of the Gaussian distribution of heat or vorticity is given in molecular diffusion by 

8 2  = 2kt. 
In  turbulent diffusion, if we start with the premise of a Gaussian distribution, 
the classical heat-conduction equation may be shown to hold (Batchelor 1949), 
provided that 

where k, is the virtual eddy diffusivity. 
To proceed further it is necessary to introduce some assumption regarding the 

functional form of S ( x )  or k,(x), or another relation connecting these two quanti- 
ties. As pointed out before, the dilution of a smoke plume is a problem in ‘relative’ 
diffusion (Batchelor 1950, 1952) in which the dispersal of particles about their 
centre of mass is relevant. One well-known feature of relative diffusion is that 
the rate of separation of particles is greater when they are farther apart. Batchelor 
(1952) explains this by remarking that the range of eddy sizes contributing to 
the relative velocity is larger when two particles are farther apart. Both this 
theory and the observations of Richardson (1926) show the eddy diffusivity to 
be proportional to ~9%. For dimensional reasons the relationship in the inertial 

(20) 
subrange must be of the form 

where ,4 is a constant of order unity. On integrating equation (19) one finds then 

as=/& = 2kT, (19) 

k, = /%QS+, 

A9 = €@3(t--t0)]$, (21) 

kT = 8/93€(t-t0)2. (22) 
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Here to is an ‘effective origin ’, related to the conditions of release. There are two 
other regimes of relative diffusion. Close to the source Batchelor (1952) finds 

dSa/dt = const. t .  (23) 

This is equivalent to S N t and k, - t which are the well-known similarity laws 
for a jet. 

In  the final phase of diffusion, where the particles wander independently in a 
very large plume their standard deviation about their centre of mass will be 
equal to their standard deviation from a fixed source. From Taylor’s (1922) 
theory of diffusion by continuous movements one has thus 

dSz/dt = const. = 2k,. (24) 

At this stage one should examine the conditions of validity of the perturbation 
analysis of the previous section. The typical length is 8, typical velocity C 
(equation (1 l)), hence the condition that inertia forces are negligible compared 
to ‘eddy-viscous ’ forces is 

where Re, is a limiting Reynolds number, above which inertia forces must be 
taken into account. Substituting the definition of C this becomes 

SC/k, < Re,, (26) 

FS/Zk% c Ra, = Re,, (26) 

which shows that the limiting Reynolds number of the buoyant movements is 
a t  once a limiting Rayleigh number. A substitution of the values of 6’ and k, 
for the initial and intermediate phase shows the Rayleigh number decreasing 
rapidly. In  the intermediate phase, in particular, 

Ra = F8/2k2, = const. F/&. 

Introducing a dissipation length L by 6 = us/L, where u is the r.m.8. turbulent 
velocity, one may rewrite the Rayleigh number as 

Ra = const. (FIuZL) (L/~t)~*5.  

In  the final phase, on the other hand, 

Ra = const. (F/u2L) (ut/L)o’b = const. (F/u21;) (SIL). 

Thus when the diffusing cloud becomes large enough compared to the scale 
of turbulence, the Rayleigh number will exceed the limiting value and the per- 
turbation approach breaks down. Just when this occurs depends on the value 
of the non-dimensional parameter F[uaL: the perturbation analysis will hold as 
long as the intensity of turbulence is suitably high 

u2 > const.P/L. (27) 
The value of the constant in this formula couId only be determined by experiment, 
but judging by other evidence on slow, viscosity dominated motion, it should 
be of order unity, provided that S Q L. In  physical terms, equation (27) restricts 
the validity of the perturbation analysis to weak line-thermals, so that the velocity 
characterizing buoyant movements would be smaller than the r.m.8: turbulent 
velocity. Even with such weak thermals, however, the ilrst-order theory breaks 
down at a certain large enough size. 
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4. Application to chimney plumes 
A chimney may be idealized as a continuous point source of heat placed into 

a steady and uniform wind of speed U ,  on which there is superimposed a homo- 
geneous field turbulence, of intensity u2 and scale L. Focusing on conditions 
some distance away from the chimney, one may expect that the temperature 
excess is already small enough, the buoyant motion slow enough forthe linearized 
equations of motion to hold. These equations are then easily seen to be identical 
with equations (1) of $ 2, except that the time-gradient a/at is replaced by Ua/ax. 
The only other departure from the theory developed in $2 occurs in the dimen- 
sions of the heat release, Q :  instead of heat per unit length, we have now heat 
released per unit time. The new variable P of equation (6) (now referred to as 
'flux of buoyancy') will have the changed dimension (length4/times). In  order 
that the same non-dimensional equations be obtained i t  is therefore necessary 
to modify the definition of the velocity-scale C (equation (1 l ) ) ,  and write 

c = F/2kT u. (28) 

Physically, one may argue that a quantity of heat SQ discharged during time- 
interval 6t will be contained in a cylinder of length Sx = USt; hence the replace- 
ment of F of the line-thermal by F/  U of the plume. (Note that F is still defined by 
equation (6), with Q = the strength of the source in cal/sec or equivalent units.) 
With this modification the solution developed in $2 is valid for a cross-section 
of a 'weakly buoyant' smoke plume. The flow pattern has been displayed as 
figures 2 and 3 in a non-dimensional form. This applies without change, the 
velocity scale being given by equation (28), the length-scale by the expressions 
of the previous section appropriately modified. 

The required modification consists of replacing the time of growth t in equations 
(19) to (24) by the time of travel x / U  of a given plume-section. Thus, for example, 
(19) becomes 

and so on. With the changed definition of C the small Rayleigh number criterion 
(26) becomes 

In the intermediate phase the Rayleigh number becomes 

Ra = const. (F/u2UL) ( U L / ~ l x ) 2 ~ .  

In  the final phase, Ra = const. (FIu2UL) (w/UL)@5. 
At this stage it is convenient to introduce the non-dimensional variable of 

' gustiness ' , G = u/ U .  The non-dimensional distance variable D = x/L, also suggests 
itself. A third non-dimensional combination occurring in the above expression of 

# = F/U3L. the Rayleigh number is 

The combination F/U3 has been used before as the relevant length scale for the 
thermal rise of the plume in a discussion of observed data (Csanady 1961). The 
Rayleigh number may now be written 

kT = &U(dS2/dX),  ( 1 9 4  

(26a) Ra = FS/2Uk2, < R%. 

R a  = const. #G-46D-2'5 (intermediate phase), 
Ra = const. #G-1'5D@5 (final phase), 
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with the constant being theoretically of order unity. The perturbation theory 
holds as long as the Rayleigh number is suitably low. This criterion (equation (27)) 
may also be expressed as 

again provided that the plume is not too large (S 6 L), the constant being 
presumably of order unity. At higher Rayleigh numbers the solution could be 
written down in principle as an expansion in increasing powers of Ra (Morton 
1960), so that it would still be a function of the non-dimensional parameters q5, 
G and D. 

Assuming that the Rayleigh number is low enough for the perturbation theory 
to hold, it is possible to express the mean path of the plume in terms of the non- 
dimensional parameters just defined. Although an integral from zero to infinity 
of the upward velocity along the horizontal diameter across the plume centre 

G2 > const.$, ( 2 7 4  

4 0.1 

FIUURE 3. Velocity profile along horizontal diameter. 

yields exactly zero upward transport (in figure 3, the positive and negative 
areas are equal, in figure 2 the $ = 0 streamline returns at idn i ty)  within the 
thermal plume itself there is a predominantly upward flow with an average vertical 
velocity somewhat less than the centre velocity. One may say that the bodily 
upward drift of the plume has a velocity 

(29) 

where the constant a has the order of magnitude of 10-1 (cf. figure 3). Intro- 
ducing the definition of C from (28) and writing t = x/U one obtains 

dhldt = wa = aC, 

dhldx = aF/2U2kT. (30) 

Observing that k, = k,(x) this represents a differential equation for the mean 
path of the plume. In  the initial stage one obtains 

dh/dx = const./x or h = const.logx (initial stage), 

which is equivalent to equation (B) of the introduction, representing the 
Bosanquet et al. (1950) result. This is, of course, a consequence of the assumption 
that S = c0nst.x near the origin (which is the same as the similarity law for 
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a jet), also used by Bosanquet et al. The present theory has been constructed 
to apply at larger distances from the source so that more interest attaches to the 

dh 901 P intermediate phase, where 
__ - - - ~  - 
ax sp3 E(X - xo)2' 

which integrates to h - h - __ 9 a P  [ y o  1 - 'I. 
l -  sp3€ x -x x - x o  

Here h, is the height of the plume at the commencement of the intermediate 
phase and 2, is another 'effective origin' marking the commencement of the 

Asymptotic height 
.*1.0 

2 4 6 8 10 12 14 
"-5 

"1-4 

FIGURE 4. Schematic representation of the mean path of a smoke plume. 

intermediate phase (figure 
(2, - xo), could be regarded 
wind speed 

4). The difference between the two effective origins, 
a characteristic time scale of the turbulence, t,, times 

x, -xo = Ut,. 

Experimentally, the time scale t ,  could be estimated from the growth of a 
puff of smoke, initially small, At time td after release the puff would have grown 
big enough for its diffusion to be governed by eddies in the inertial subrange. The 
onset of this phase of accelerated diffusion may be identified with the visually 
observed 'break up ' of the puff into several distinct portions, in marked contrast 
to its original, fairly smooth expansion. On dimensional grounds the only 
reasonable hypothesis is 

where cp is a constant of order unity. One has now, for the asymptotic plume 
height (as x+m) from equation (31)' 

t ,  = 'PLIU, 

ha- h, = <Flu3, (32) 

where < = 9a/8p3cpGz contains the two constants and cp vaguely described 
before as 'of order unity'. If one assumes that these could be anywhere between 
0.5 and 2.0, a! = 0.1 and G = 0.05 to 0.20 (an order of magnitude estimate of 
gustiness) one finds 6 to be between 0.3 and 360. This is a rather uncertain result 
and it is difficult to compare with experiment because equation (32) refers to 
the intermediate phase only. However, if we assume that initial conditions 
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(chimney diameter, for example) do not affect the asymptotic height, a similar 
formula may be written down by dimensional reasoning for the entire thermal 
rise, 

where, however, cwould depend in an unknown way on the parameters governing 
atmospheric turbulence. 

Crude observations at Tallawarra, New South Wales (Csanady 1961) have 
indicated a value 5 = 250. This is consistent with the theoretical estimate, 
especially if one observes that the latter only accounts for a certain fraction of c. 
It is to be noted that the contribution from the intermediate phase is inversely 
proportional to the square of gustiness, although this rests on the rather uncertain 
estimate of the distance (xl - x,,). 

Further downstream the plume enters the final phase of relative diffusion in 
which by Taylor's (1922) theorem 

h, = cF/U3,  ( 3 2 4  

dS2/dx = G L ,  

with L a length scale equal in order of magnitude to the dissipation length. 
Consequently, dhldx = aF/GLU3 = const. 

Using the asymptotic height of the intermediate phase from equation (32) one 
may express this last result as 

dhldx = aha/cG.L. (33) 

In  typical practical situations ha is of the same order of magnitude as L (50 m, 
say) so that if G = 0.1, the gradient dhldx in the h a 1  phase of diffusion will be 
of the order of This is quite small, but when one considers the movement of 
the plume over several km a rate of rise of 10mIkm may be of importance. 

The results of this section may be combined with those of an earlier paper 
(Csanady 1961) to give the following comprehensive picture of plume behaviour. 
When the effects of initial upward momentum are compmatively minor, the 
significant length scale of upward drift is 

I = PIUS, 

where P is 'flux of buoyancy' and U wind speed. Close to the source the plume 
rises according to h/E = K(x/~)",  

where the constant K has a value between 1.7 and 2.2 (depending on the charac- 
teristics of atmospheric turbulence), and the constant n lies between $ and f 
as given by Sutton (1950), Priestley (1956) and Scorer (1959). At some distance 
from the source, typically of the order of 300 m, the plume 'breaks up ' and enters 
a more vigorous phase of diffusion. In  this phase it almost reaches an asymptotic 
height given by 

where the constant 5 has, in an observed case, the value of 250 and is probably 
proportional to the inverse second power of gustiness. This asymptotic height is 
nearly reached at distances typically of the order of 1000 m. On a scale of several 

hall = 5, 
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km it may be important that the plume does not quite turn horizontal, but in its 
final stage retains a gradient of the order of magnitude 

dhldx = al/GL, 

where L is the dissipation scale of turbulence, G is gustiness and a a constant 
approximately equal to 0.1. 

All the above results pertain to a neutral atmosphere, a moderately strong 
horizontal wind and a plume far removed from the ground. When the plume 
grows very large, the results are subject to the further qualification that the 
perturbation theory as developed here ceases to apply and a ‘Rayleigh number 
effect ’ may become evident. In  the present application this means that the mean 
path of the plume may become a more complex function of the form 

h 
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